Транспорт липидов

Окисление жирных кислот

β-Окисление жирных кислот

Процесс β-окисления высших жирных кислот (ВЖК) складывается из следующих этапов:

  • активация ВЖК на наружной поверхности мембраны митохондрий при участии АТФ, кофермента А и ионов магния с образованием активной формы ВЖК (ацил — КоА).
  • транспорт жирных кислот внутрь митохондрий возможен при присоединении активной формы жирной кислоты к карнитину, находящемуся на наружной поверхности внутренней мембраны митохондрий. Образуется ацил-карнитин, обладающий способностью проходить через мембрану. На внутренней поверхности комплекс распадается и карнитин возвращается на наружную поверхность мембраны.
  • внутримитохондриальное окисление жирных кислот состоит из последовательных ферментативных реакций. В результате одного завершенного цикла окисления происходит отщепление от жирной кислоты одной молекулы ацетил-КоА, т.е. укорочение жирнокислотной цепи на два углеродных атома. При этом в результате двух дегидрогеназных реакций восстанавливается ФАД до ФАДН2 и НАД+ до НАДН2. Таким образом завершая 1 цикл β—окисления ВЖК, в результате которого ВЖК укоротилось на 2 углеродных звена. При β-окислении выделилось 5АТФ и 12АТФ выделилось при окислении ацетил-КоА в цикле Кребса и сопряженных с ним ферментов дыхательной цепи. Окисление ВЖК будет происходить циклически одинаково, но только до последней стадии — стадии превращения масляной кислоты (бутирил-КоА), которая имеет свои особенности, которые необходимо учитывать при подсчёте суммарного энергетического эффекта окисления ВЖК, когда в результате одного цикла образуется 2 молекулы ацетил-КоА, одна из них проходила β-окисление с выделением 5АТФ, а другая нет.

ω-Окисление жирных кислот

Хотя для жирных кислот наиболее характерно β-окисление, встречаются также два других типа окисления: α-и ω-окисления. Окисление жирных кислот с длинной цепью до 2-оксикислот и затем до жирных кислот с числом атомов углерода на один меньше, чем в исходном субстрате, было показано в микросомах мозга и
других тканей, а также в растениях. 2-Оксикислоты с длинной цепью являются компонентами липидов мозга.

Окисление ненасыщенных жирных кислот

Около половины жирных кислот в организме человека ненасыщенные. β-Окисление этих кислот идёт обычным путём до тех пор, пока двойная связь не окажется между третьим и четвёртым атомами углерода. Затем фермент еноил-КоА изомераза перемещает двойную связь из положения 3-4 в положение 2-3 и изменяет цис-конформацию двойной связи на транс-, которая требуется для β-окисления. В этом цикле β-окисления первая реакция дегидрирования не происходит, так как двойная связь в радикале жирной кислоты уже имеется. Далее циклы β-окисления продолжаются, не отличаясь от обычного пути.

Нарушения окисления жирных кислот

Нарушение переноса жирных кислот в митохондрии.

Скорость переноса жирных кислот внутрь митохондрий, а следовательно и скорость процесса β-окисления, зависит от доступности карнитина и скорости работы фермента карнитинацилтрансферазы I.

β-Окисление могут нарушать следующие факторы:

  • длительный гемодиализ, в ходе которого организм теряет карнитин;
  • длительная ацидурия, при которой карнитин выводится как основание с органическими кислотами;
  • лечение больных сахарным диабетом препаратами сульфонилмочевины, ингибирующими карнитинацилтрансферазу I;
  • низкая активность ферментов, синтезирующих карнитин;
  • наследственные дефекты карнитинацил-трансферазы I.

Функции липидов в организме.

Липиды выполняют многообразные функции в организме человека:

  1. Структурная функция. В комплексе с белками составляют основу клеточных мембран, обеспечивают их жидкокристаллическое состояние и конформацию белков-рецепторов для гормонов.

  2. Энергетическая функция. Липиды на 25-30 % обеспечивают организм энергией и являются «метаболическим топливом»: окисление 1 г жира дает 38,9 кДж или 9,3 ккал энергии, что в 2 раза больше, чем белки или углеводы. Липиды могут откладываться про запас в клетках жировой ткани (подкожная клетчатка, брыжейка, околопочечная капсула) на длительное время (в отличии от гликогена – запаса углеводов на 24 часа) и служат запасной формой энергии и питательных веществ.

  3. Регуляторная функция. Входя в состав клеточных мембран, могут участвовать в регуляции деятельности гормонов, ферментов и биологического окисления. Некоторые представители липидов сами являются гормонами (например, кальцитриол, кортикостироиды) и витаминами (D3, F). Производные липидов – простогландины, участвуют в регуляции обменных процессов в клетке.

  4. Защитная функция. Липиды обеспечивают термоизоляцию, поэтому играют большую роль в терморегуляции, защищают органы от сотрясения, предохраняют кожу от высыхания.

  5. Влияют на активность мембранно-связанных ферментов, формируя их конформацию, образование активного центра.

  6. Участвуют в передаче нервного импульса.

  7. Являются растворителями для жирорастворимых витаминов A, D, E, К, что способствует их всасыванию.

  8. В виде липопротеидов, комплексов жирных кислот с альбуминами являются транспортной формой «метаболического топлива».

  9. Служат источником ненасыщенных жирных кислот – незаменимых факторов питания.

Эйкозаноиды

Эйкозаноиды, включающие в себя простагландины, тромбоксаны, лейкотриены и ряд других веществ, — высокоактивные регуляторы клеточных функций. Они имеют очень короткий Т1/2, поэтому оказывают эффекты как «гормоны местного действия», влияя на метаболизм продуцирующей их клетки по аутокринному механизму, и на окружающие клетки — по паракринному механизму. Эйкозаноиды участвуют во многих процессах: регулируют тонус гладкомышечных клеток и вследствие этого влияют на АД, состояние бронхов, кишечника, матки. Эйкозаноиды регулируют секрецию воды и натрия почками, влияют на образование тромбов. Разные типы эйкозаноидов участвуют в развитии воспалительного процесса, происходящего после повреждения тканей или инфекции. Такие признаки воспаления, как боль, отёк, лихорадка, в значительной мере обусловлены действием эйкозаноидов. Избыточная секреция эйкозаноидов приводит к ряду заболеваний, например, бронхиальной астме и аллергическим реакциям.

Субстраты для синтеза эйкозаноидов

Основным субстратом для синтеза эйкозаноидов является арахидоновая (ω-6-эйкозатетраеновая) кислота, содержащая 4 двойные связи при углеродных атомах (5, 8, 11, 14). Она может поступать с пищей или синтезироваться из линолевой кислоты. В небольших количествах для синтеза эйкозаноидов могут использоваться ω-6-эйкозатриеновая кислота с тремя двойными связями (5, 8, 11) и ω-3-эйкозапентаеновая кислота, в составе которой имеется 5 двойных связей в положениях 5, 8, 11, 14, 17. Обе минорные эйкозановые кислоты либо поступают с пищей, либо синтезируются из олеиновый и линоленовой кислот соответственно.


Пути биосинтеза эйкозаноидов из арахидоновой кислоты

Синтез лейкотриенов, ГЭТЕ(гидроксиэйкозатетроеноатов), липоксинов

Дополнительные сведения: Лейкотриены

Синтез лейкотриенов идёт по пути, отличному от пути синтеза простагландинов, и начинается с образования гидроксипероксидов – гидропероксидэйкозатетраеноатов (ГПЭТЕ). Эти вещества или восстанавливаются с образованием гидроксиэйкозатетроеноатов (ГЭТЕ) или превращаются в лейкотриены или липоксины. ГЭТЕ отличаются по положению гидроксильной группы у 5-го, 12-го или 15-го атома углерода, например: 5-ГЭТЕ, 12-ГЭТЕ.

Липоксины (например, основной липоксин А4) включают 4 сопряжённых двойных связи и 3 гидроксильных группы.

Синтез липоксинов начинается с действия на арахидоновую кислоту 15-липоксигеназы, затем происходит ряд реакций, приводящих к образованию липоксина А4

Клинические аспекты обмена эйкозаноидов

Медленно реагирующая субстанция при анафилаксии (МРВ-А) представляет собой смесь лейкотриенов С4, D4 и Е4. Эта смесь в 100—1000 раз более эффективна, чем гистамин или простагландины как фактор, вызывающий сокращение гладкой мускулатуры бронхов. Эти лейкотриены вместе с лейкотрином В4 повышают проницаемость кровеносных сосудов и вызывают приток и активацию лейкоцитов, а также, являются важными регуляторами при многих заболеваниях, в развитии которых участвуют воспалительные процессы или быстрые аллергические реакции (например, при бронхиальной астме).

Использование производных эйкозаноидов в качестве лекарственных средств

Хотя действие всех типов эйкозаноидов до конца не изучено, имеются примеры успешного использования лекарств – аналогов эйкозаноидов для лечения различных заболеваний. Например, аналоги PG Е1 и PG Е2 подавляют секрецию соляной кислоты в желудке, блокируя гистаминовые рецепторы II типа в клетках слизистой оболочки желудка. Эти лекарства, известные как Н2-блокаторы, ускоряют заживление язв желудка и двенадцатиперстной кишки. Способность PG Е2 и PG F2α стимулировать сокращение мускулатуры матки используют для стимуляции родовой деятельности.

Значение

Липиды должны поступать в организм вместе с пищей и участвовать в метаболизме. В зависимости от типа жиры выполняют в организме разнообразные функции:

  • триглицериды сохраняют тепло организма;
  • подкожный жир защищает внутренние органы;
  • фосфолипиды входят в состав мембран любой клетки;
  • жировая ткань является резервом энергии – расщепление 1 г жира даёт 39 кДж энергии;
  • гликолипиды и ряд других жиров выполняют рецепторную функцию – связывают клетки, получая и проводя сигналы, полученные из внешней среды;
  • фосфолипиды участвуют в свёртываемости крови;
  • воски покрывают листья растений, одновременно предохраняя их от высыхания и промокания.

Избыток или недостаток жиров в организме приводит к изменению обмена веществ и нарушению функций организма в целом.

Что мы узнали?

Жиры имеют сложное строение, классифицируются по разным признакам и выполняют разнообразные функции в организме. Липиды состоят из жирных кислот и спиртов. При присоединении дополнительных групп образуются сложные жиры. Белки и жиры могут образовывать сложные комплексы – липопротеины. Жиры входят в состав плазмалеммы, крови, ткани растений и животных, выполняют теплоизолирующую и энергетическую функции.

Функции липидов

1. Энергетическая

При полном окислении 1 г липидов выделяется 38,9 кДж энергии, то есть в 2 раза больше, чем при окислении 1 г углеводов.

2. Запасающая

Жиры являются основным запасающим веществом у животных, а также у некоторых растений. Они могут использоваться также в качестве источника воды (при окислении 1 г жира образуется более 1 г воды). Это особенно ценно для пустынных животных, обитающих в условиях дефицита воды.

3. Защитная

Обладая выраженными термоизоляционными свойствами, липиды защищают наш организм от температурных перепадов. Также липиды защищают организм от механических и физических воздействий.

Воска, которые покрывают тело растений, защищают их от излишнего испарения воды

Это очень важно для тех растений, которые живут в засушливых регионах в условиях дефицита влаги

4. Структурная

В комплексе с белками липиды являются структурными компонентами всех биологических мембран.

5. Регуляторная

Липиды принимают участие в регуляции физиологических функций организма, так как некоторые из них являются гормонами.

Список литературы

  1. Каменский А.А., Криксунов Е.А., Пасечник В.В. Общая биология 10-11 класс Дрофа, 2005.
  2. Биология. 10 класс. Общая биология. Базовый уровень / П.В. Ижевский, О.А. Корнилова, Т.Е. Лощилина и др. – 2-е изд., переработанное. – Вентана-Граф, 2010. – 224 стр.
  3. Беляев Д.К. Биология 10-11 класс. Общая биология. Базовый уровень. – 11-е изд., стереотип. – М.: Просвещение, 2012. – 304 с.
  4. Агафонова И.Б., Захарова Е.Т., Сивоглазов В.И. Биология 10-11 класс. Общая биология. Базовый уровень. – 6-е изд., доп. – Дрофа, 2010. – 384 с.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Files.school-collection.edu.ru (Источник).
  2. Biouroki.ru (Источник).
  3. Youtube.com (Источник).

Домашнее задание

  1. Вопросы в конце параграфа 10 (стр. 39) – Каменский А.А., Криксунов Е.А., Пасечник В.В. «Общая биология», 10-11 класс (Источник)
  2. По какой причине может происходить отложение жиров в избыточном количестве?

Классификация липидов Свойства и функции липидов зависят от жирных кислот

Жирные кислоты входят в состав практически всех указанных классов липидов, кроме производных холестерола.

У человека жирные кислоты характеризуются следующими особенностями:

  • четное число углеродных атомов в цепи,

  • отсутствие разветвлений цепи,

  • наличие двойных связей только в цис-конформации.

В свою очередь, по строению жирные кислоты неоднородны и различаются длиной цепи и количеством двойных связей.

К насыщенным жирным кислотам относится пальмитиновая (С16), стеариновая (С18) и арахиновая (С20). К мононенасыщенным – пальмитоолеиновая (С16:1, Δ9), олеиновая (С18:1, Δ9). Указанные жирные кислоты находятся в большинстве пищевых жиров и в жире человека.

Полиненасыщенные жирные кислоты содержат от 2-х и более двойных связей, разделенных метиленовой группой. Кроме отличий по количеству двойных связей, кислоты различаются их положением относительно начала цепи (обозначается через греческую букву Δ “дельта”) или последнего атома углерода цепи (обозначается буквой ω “омега”).

По положению двойной связи относительно последнего атома углерода полиненасыщенные жирные кислоты делят на ω9, ω6 и ω3-жирные кислоты.

1. ω6-жирные кислоты. Эти кислоты объединены под названием витамин F, и содержатся в растительных маслах.

  • линолевая (С18:2, Δ9,12),

  • γ-линоленовая (С18:3, Δ6,9,12),

  • арахидоновая (эйкозотетраеновая, С20:4, Δ5,8,11,14).

2. ω3-жирные кислоты:

  • α-линоленовая (С18:3, Δ9,12,15),

  • тимнодоновая (эйкозопентаеновая, С20:5, Δ5,8,11,14,17),

  • клупанодоновая (докозопентаеновая, С22:5, Δ7,10,13,16,19),

  • цервоновая (докозогексаеновая, С22:6, Δ4,7,10,13,16,19).

Наиболее значительным источником кислот ω3-группы служит жир рыб холодных морей. Исключением является α-линоленовая кислота, имеющаяся в конопляном, льняном, кукурузном маслах.

Внимание исследователей к ω3-кислотам привлек феномен эскимосов, коренных жителей Гренландии, и коренных народов российского Заполярья. На фоне высокого потребления животного белка и жира и очень незначительного количества растительных продуктов у них отмечалось состояние, которое назвали АНТИАТЕРОСКЛЕРОЗ

Он характеризуется рядом положительных особенностей:    • отсутствие заболеваемости атеросклерозом, ишемической болезнью сердца и инфарктом миокарда, инсультом, гипертонией;    • увеличенное содержание липопротеинов высокой плотности (ЛПВП) в плазме крови, уменьшение концентрации общего холестерина и липопротеинов низкой плотности (ЛПНП);    • сниженная агрегация тромбоцитов, невысокая вязкость крови;    • иной жирнокислотный состав мембран клеток по сравнению с европейцами – С20:5 было в 4 раза больше, С22:6 в 16 раз!

Омыляемые липиды

К омыляемым липидам относятся сложные соединения, структурные части которых объединены эфирной связью. Этот класс жиров легко гидролизуется в растворе под действием щелочей.

Омыляемые липиды – это большой класс веществ, состоящий из отдельных групп:

  • сложные эфиры;
  • гликолипиды;
  • фосфолипиды.

Сложные эфиры

К этой группе относятся:

  • жиры (состоят из глицерина и жирных кислот);
  • воски (производные жирного спирта и кислоты);
  • эфиры стеринов.

Сложные эфиры возникают при взаимодействии органической кислоты, содержащей карбоксильную функциональную группу, и спирта, свойства которого связаны с гидроксильной группой. Реакция между ними приводит к образованию соединения, которое обладает сложноэфирной связью.

Гликолипиды

Среди омыляемых липидов особого внимания заслуживают гликолипиды – сложные вещества, молекула которых представляет собой комбинацию липида и углевода. К ним относят:

  • цереброзиды;
  • ганглиозиды.


В основе гликолипидов обычно лежит молекула особого органического спирта – сфингозина. Они так же содержат фосфатную группу, как у фосфолипидов, но она уже не является «головой», так как связывается с достаточно длинными молекулами полимерных углеводов. Так же, как и у других омыляемых липидов, у гликолипидов в составе наблюдаются органические кислоты.

Фосфолипиды

Группа объединяет следующие вещества:

  • фосфатидовые кислоты;
  • фосфатиды;
  • сфинголипиды.

Фосфолипиды, как видно из названия, имеют отношение к фосфору. Действительно, в их строении присутствует фосфатная функциональная группа (остаток ортофосфорной кислоты). Помимо нее, липиды этой группы содержат также органический спирт и одну либо две органических кислоты.

Вместе эти компоненты создают нечто похожее на головастика: полярная фосфатная группа хорошо взаимодействует с водой, образуя «голову», в то время как неполярные органические кислоты с водой взаимодействуют плохо, и образуют своеобразный «хвост». Эти особенности фосфолипидов как раз и позволяют выполнять им свои важные функции в организме, о которых речь пойдёт немного позже.

Обменные процессы


Организм содержит липиды в том количестве, которое определено природой. С учетом структуры, воздействия и условия накопления в организме, все жироподобные вещества делятся на следующие классы.

  1. Триглицериды защищают мягкие подкожные ткани, а также органы от повреждений, бактерий. Между их количеством и сохранением энергии есть прямая связь.
  2. Фосфолипиды отвечают за протекание метаболических процессов.
  3. Холестерол, стероиды – это вещества, нужные для укрепления мембран клеток, а также для нормализации деятельности желез, в частности, регуляции половой системы.

Все разновидности липидов образуют соединения, обеспечивающие поддержание процесса жизнедеятельности организма, его способности к сопротивлению негативным факторам, включая размножение бактерий. Есть связь между липидами и образованием многих крайне важных белковых соединений. Невозможна без этих веществ работа мочеполовой системы. Также может произойти отказ репродуктивной способности человека.

Обмен липидов предполагает связь между всеми вышеуказанными компонентами и их комплексное воздействие на организм. Во время доставки полезных веществ, витаминов и бактерий в клетки мембран они трансформируются в другие элементы. Такое положение способствует ускорению кровоснабжения и за счет этого, быстрому поступлению, распространению и усвоению витаминов, поступающих с продуктами питания.

Если останавливается хотя бы одно из звеньев, то связь нарушается и человек ощущает проблемы с поступлением жизненно важных веществ, полезных бактерий и распространением их по всему организму. Такое нарушение непосредственным образом сказывается и на процессе липидного обмена.

Функции

Липиды распределены в каждой клетке организма, но у каждых из них есть свои определенные функциональные обязанности, которые они выполняют. Существуют основные обязанности, это те функции, что выполняют липидные соединения, а дополнительные функции, это те, в которых липиды являются помощниками.

Функции липидных соединений:

Липидные соединения в процессе распадения выделяют много энергии, которая необходима организму:

  • Для контролирования процесса поступления в клетки организма молекул кислорода,
  • Формирование и обеспечение клеток питательными веществами,
  • Корректирование дыхания и роста клеток.

Липидные соединения откладываются в подкожной клетчатке и обеспечивают запас жира в организме на случай непредвиденных ситуаций:

  • В период беременности женщин, липиды обеспечивают развитие плода,
  • При резком похудении, жиры восполняют запас жира из резерва, чтобы поддержать внутренние органы.

Липид является основной частью мембран клеток организма, и в этом заключается основная структурная функция. Без липопротеидов, которые доставляют в клетки молекулы холестерола, структурная функция не могла бы выполняться.

Липопротеиды это основные транспортные перевозчики жира по организму, поэтому они выполняют транспортную функцию липидных соединений.

Ферментативная второстепенная функциональная обязанность липида:

  • Защита слизистой тонкого кишечника от чрезмерного влияния на расщепление липидов ферментов, вырабатываемых клетками поджелудочной железы,
  • Уничтожение лишних ферментов происходит при помощи молекул фосфолипидов и холестерола.

Сигнальную функцию выполняют молекулы гликолипиды:

  • Передача импульсов между волокнами нервной системы, а также между головным и спинным мозгом при помощи цереброспинальной жидкости,
  • Распознавание импульсов на внутриклеточном уровне, которые подают липидоподобные соединения для выявления необходимых веществ для клетки.

Регуляторные обязанности липидов в организме:

  • Регуляторная политика липида в клеточной мембране это режим пропуска полезных элементов в клетку,
  • Синтезирование гормонов в организме регулирующих репродуктивную функцию у человека,
  • Регулирование защиты организма при помощи функционировании иммунной системы.

Какие функции выполняют в организме

Липиды составная часть почти всех тканей человеческого организма. Встречаются разные подвиды, каждый из которых отвечает за какую-то определённую функцию. Далее подробнее остановимся на том, какое значение вещества для жизнедеятельности:

  1. Энергетическая функция. Имеют свойство распадаться и в процессе появляется много энергии. Она нужна клеткам организма, чтобы поддерживать такие процессы, как поступление воздуха, формирование веществ, рост и дыхание.
  2. Резервная функция. В организме жиры откладываются про запас, именно из них состоит жировая прослойка кожи. Если наступает голод, то организм задействует эти резервы.
  3. Функция теплоизоляции. Жировая прослойка плохо проводит тепло, а потому организм гораздо легче поддерживать температуру.
  4. Структурная функция. Это относится к клеточным мембранам, потому что вещество является их постоянным компонентом.
  5. Ферментативная функция. Одна из второстепенных функций. Они помогают клетками формировать ферменты и помогают с усвоением некоторых микроэлементов, поступающих извне.
  6. Транспортная функция. Побочная и заключается в способности некоторых видов липидов переносить вещества.
  7. Сигнальная функция. Тоже является второстепенной и просто поддерживает некоторые процессы организма.
  8. Регуляторная функция. Это ещё один механизм, который имеет побочное значение. Сами по себе они почти не участвуют в регулировании разных процессов, но являются компонентом веществ, прямо влияющих на них.

Таким образом, можно с уверенностью утверждать, что функциональное значение липидов для организма переоценить сложно

Поэтому важно, чтобы их уровень всегда был в норме. Многие биологические и биохимические процессы в организме на них завязаны

Формула липидов. Строение и функции липидов

Липиды не имеют единой химической характеристики. В большинстве пособий, давая определение липидам , говорят, что это сборная группа нерастворимых в воде органических соединений, которые можно извлечь из клетки органическими растворителями — эфиром, хлороформом и бензолом. Липиды можно условно разделить на простые и сложные.

Простые липиды в большинстве представлены сложными эфирами высших жирных кислот и трехатомного спирта глицерина — триглицеридами. Жирные кислоты имеют: 1) одинаковую для всех кислот группировку — карбоксильную группу (–СООН) и 2) радикал, которым они отличаются друг от друга. Радикал представляет собой цепочку из различного количества (от 14 до 22) группировок –СН2–. Иногда радикал жирной кислоты содержит одну или несколько двойных связей (–СН=СН–), такую жирную кислоту называют ненасыщенной . Если жирная кислота не имеет двойных связей, ее называют насыщенной . При образовании триглицерида каждая из трех гидроксильных групп глицерина вступает в реакцию конденсации с жирной кислотой с образованием трех сложноэфирных связей.

Если в триглицеридах преобладают насыщенные жирные кислоты , то при 20°С они — твердые; их называют жирами , они характерны для животных клеток. Если в триглицеридах преобладают ненасыщенные жирные кислоты , то при 20 °С они — жидкие; их называют маслами , они характерны для растительных клеток.

1 — триглицерид; 2 — сложноэфирная связь; 3 — ненасыщенная жирная кислота;4 — гидрофильная головка; 5 — гидрофобный хвост.

Плотность триглицеридов ниже, чем у воды, поэтому в воде они всплывают, находятся на ее поверхности.

К простым липидам также относят воски — сложные эфиры высших жирных кислот и высокомолекулярных спиртов (обычно с четным числом атомов углерода).

Сложные липиды . К ним относят фосфолипиды, гликолипиды, липопротеины и др.

Фосфолипиды — триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты. Принимают участие в формировании клеточных мембран.

Гликолипиды — см. выше.

Липопротеины — комплексные вещества, образующиеся в результате соединения липидов и белков.

Неомыляемые липиды

Неспособные к взаимодействию со щелочами липиды составляют собой отдельную группу веществ – неомыляемых липидов. Эти соединения представляют собой спирты с длинной цепью, циклические спирты, а также каротиноиды.

Единой классификации неомыляемых липидов нет, среди всего их обилия можно очертить несколько ярко выраженных групп.

  1. Длинноцепочечные органические кислоты (последовательность атомов карбона больше 16 атомов, оканчивается карбоксильной группой).
  2. Длинноцепочечные органические спирты (длинная последовательность атомов карбона, которая оканчивается гидроксильной функциональной группой).
  3. Эйкозаноиды (производные жирных кислот, образованные частичной циклизацией и появлением внутримолекулярных связей).
  4. Циклические спирты (полициклические соединения, которым характерно большое количество гидроксильных групп).
  5. Стероиды (производные циклических спиртов, образованные появлением дополнительных функциональных групп).
  6. Каротиноиды (длинные карбоновые цепи, на окончаниях которых часто находятся циклические алканы).

Все перечисленные выше вещества имеют свои особенности, но их объединяют некоторые химические свойства. Среди них: большой молекулярный вес, плохая способность к взаимодействию с водой, растворимость в органических веществах, возможность проникать сквозь биологические мембраны.

Классификация сложных липидов

Их также можно разделить на три группы:

  • Фосфолипиды. Строение липидов этой группы предусматривает, помимо остатков многоатомных спиртов и высших жирных кислот, наличие остатков фосфорной кислоты, к которым присоединены добавочные группы различных элементов.
  • Гликолипиды. Это химические вещества, образующиеся в результате соединения липидов с углеводами.
  • Сфинголипиды. Это производные алифатических аминоспиртов.

Первые два типа липидов, в свою очередь, разделяются на подгруппы.

Так, разновидностями фосфолипидов можно считать фосфоглицеролипиды (содержат в своем составе глицерин, остатки двух жирных кислот, фосфорной кислоты и аминоспирт), кардиолипины, плазмалогены (содержат в своем составе ненасыщенный одноатомный высший спирт, фосфорную кислоту и аминоспирт) и сфингомиелины (вещества, которые состоят из сфингозина, жирной кислоты, фосфорной кислоты и аминоспирта холина).

К видам гликолипидов относятся цереброзиды (кроме сфингозина и жирной кислоты, содержат галактозу либо глюкозу), ганглиозиды (содержат олигосахарид из гексоз и сиаловых кислот) и сульфатиды (к гексозе прикреплена серная кислота).

Липиды крови и плазмы

анализов крови

Холестерин

В организме человека холестерин выполняет следующие функции:

  • придает жесткость клеточным мембранам;
  • принимает участие в синтезе стероидных гормонов;
  • входит в состав желчи;
  • участвует в усвоении витамина D;
  • регулирует проницаемость стенок некоторых клеток.

Липопротеины (липопротеиды) и их фракции (низкой плотности, высокой плотности и др.)

Существуют следующие классы (фракции) липопротеинов:

  • Высокой плотности. Липопротеины высокой плотности (ЛПВП) принимают участие в переносе липидов от тканей организма к печени. С медицинской точки зрения они считаются полезными, так как за счет маленьких размеров могут проходить сквозь стенки сосудов и «очищать» их от отложений липидов. Таким образом, высокий уровень ЛПВП снижает риск развития атеросклероза.
  • Низкой плотности. Липопротеины низкой плотности (ЛПНП) осуществляют транспорт холестерина и других липидов от печени (места их синтеза) к тканям. С медицинской точки зрения эта фракция липопротеинов является вредной, так как именно ЛПНП способствуют отложению липидов на стенках сосудов с образованием атеросклеротических бляшек. Высокий уровень ЛПНП сильно повышает риск развития атеросклероза.
  • Средней (промежуточной) плотности. Липопротеины промежуточной плотности (ЛППП) не имеют существенного диагностического значения, так как являются промежуточным продуктом обмена липидов в печени. Они также переносят липиды от печени к другим тканям.
  • Очень низкой плотности. Липопротеины очень низкой плотности (ЛОНП) переносят липиды от печени к тканям. Они также повышают риск развития атеросклероза, но в этом процессе играют второстепенную роль (после ЛПНП).
  • Хиломикроны. Хиломикроны значительно больше других липопротеинов. Они образуются в стенках тонкого кишечника и переносят липиды, поступающие с пищей к другим органам и тканям. В развитии различных патологических процессов эти вещества не играют значительной роли.

Важнейшие свойства и функции липидов

Животные жиры – это сложные соединения, содержащие большой процент жирных кислот, имеющих насыщенную форму. В состав растительных жиров входят ненасыщенные кислоты.

Свойства жиров определяют их биологическую ценность. Намного полезнее жиры, имеющие большой процент ненасыщенных жирных кислот в своей структуре. А самую большую ценность для организма человека представляет наличие полиненасыщенных жирных кислот. Это так называемые эссенциальные, практически незаменимые жирные кислоты для нормального функционирования всех систем.


Все функции соединений липидной природы в организме человека можно разделить на две группы:

  • энергетическая;
  • структурно-пластическая.

Жиры обеспечивают организм энергией. При окислении 1 кг этих соединений выделяются 9 ккал энергии. Если сравнивать аналогичные процессы разложения углеводов и белков, то они являются менее емким. Разрушение таких же количеств этих органических соединений дает всего 4 ккал. Такое положение дел сделало липиды основным резервным материалом, используемым организмом после болезни, а также после вынужденного голодания (как строительные кирпичики, составляющие основу здания).

С другой стороны, липиды – это сложные соединения, содержащиеся в клеточных и межклеточных мембранах. Они поддерживают строение клеточных структур, то есть играют очень важную роль в процессе образования новых клеток, и тем самым выполняют структурно-пластическую функцию.

Также они ответственны за направление потоков нервных сигналов. Липиды являются важными компонентами миелиновых оболочек нервных волокон, обеспечивают соответствующее строение каждой нервной клетки и отростков нервных окончаний.

Жиры принимают активное участие в процессе синтеза половых гормонов и витамина D. Необходимы они для образования тромбопластина и миелина нервных тканей, желчной кислоты, простагландина. Жиры являются, по сути дела, теми кладовыми, которые дают такой важный продукт для организма, как стероидные гормоны.

Согласно утверждениям ученых, жировая прослойка также участвует в гуморальной регуляции функций организма. Вследствие этого мужские половые стероидные гормоны могут преобразовываться в женские.

Жиры предотвращают потери тепла, когда человек попадает в некомфортные условия. Так проявляется еще одна функция – регулирование термобаланса организма.


Кожа человека состоит практически из липидов, которые придают ей, так же, как и стенкам сосудов, и всем внутренним органам, определенную эластичность. Кроме того, жиры принимают участие в синтезе необходимых для организма соединений, которые предохраняют от воздействия неблагоприятных условий. В этом состоит их защитная функция.

Эта характеристика не совсем полная, но основные качества здесь указаны. Вдобавок стоит отметить, что при поступлении в организм избыточного количества жира, он откладывается как соответствующий «стратегический» запас в жировой ткани. Вот почему, например, у спортсменов нормальным количеством жира считается его наличие не менее 10—12% от общего веса тела.

Добавить комментарий