Перекисное окисление липидов

Виды окисления

Если человек здоров, то контроль осуществляется антиокислительной системой. Её функции заключаются в регулировании активности, а также скорости фосфорилирования. Происходит это в результате связывания провоцирующий факторов. Второй вариант, нейтрализуются перекиси. В результате этого устраняется лишние обменные продукты.

Если оно усиливается, это становится может стать началом патологий, приводящих к разнообразным болезням. Есть такие этапы:

  1. Ферментативное аутоокисление. Этот тип приводит к модификации фосфолипидов мембран клеток. Также именно он способствует формированию обменных реакций, детоксикации и появлению веществ биологически активных.
  2. Неферментативное аутоокисление. Этот вид приводит к разрушению клетки. Происходит из-за появления свободных радикалов и перекисей в большом количестве. В результате этого понижается работа антиоксидантной системы.

Особенности переваривания и всасывании липидов у детей

Главная особенность переваривания липидов в раннем детском возрасте заключается в том, что примерно половина их частично расщепляется в желудке. Данная особенность обусловлена следующими обстоятельствами:

  1. липиды молока находится в эмульгированном состоянии;

  2. при грудном вскармливании в переваривании липидов участвует липаза грудного молока;

  3. в процессе сосания у грудного ребёнка вырабатываются лингвальная и фарингальная липазы, которые оказывают эффект в желудке;

  4. активно вырабатывается желудочная липаза с оптимумом рН около 5,0;

  5. у детей в желудке менее кислая среда, приближенная к оптимуму рН для липаз;

  6. активность панкреатической липазы у детей снижена;

  7. в детском возрасте менее активен синтез жёлчных кислот, повышена их потеря через кишечник и замедлена гепато – энтеральная циркуляция.

Всасывание продуктов гидролиза жиров у детей происходит с большей скоростью, чем у взрослых в связи с высокой проницаемостью слизистой кишечника, а также в связи с наличием в липидах грудного молока большого количества среднецепочечных жирных кислот.

Окислительный стресс

Как упоминалось выше, окисление является естественным процессом, когда организм вырабатывает энергию из жирных кислот или сигнальных молекул, таких как эйкозаноиды. Поскольку перемещение свободных радикалов в организме может привести к потенциальному вреду, человеческие клетки разработали многочисленные защитные механизмы против разрушительных эффектов окисления. Например, присутствие антиоксидантов, которые ингибируют накопление свободных радикалов, и специфические ферментные системы, которые разрушают перекиси липидов в кислороде и воде, обе являются безвредными молекулами. Однако защитные системы организма человека ограничены. Дисбаланс между реактивными видами кислорода и способностью организма нейтрализовать и устранять свободные радикалы может привести к накоплению окислительного повреждения, обычно называемого окислительным стрессом, который, как известно, потенциально вреден. Окислительный стресс усиливает окислительную реакцию путем подавления белков, включенных в окислительную защиту, и путем истощения клеточного хранилища антиоксидантов, таких как витамин E и каротиноиды.

Расщепление, переваривание и всасывание пищевых липидов

Суточная потребность человека в жирах составляет 70-80 г, хотя в пищевом рационе их содержание может колебаться от 80 до 130 г.

Переваривание липидов в желудке

В желудке имеется фермент липаза, способный катализировать расщепление триацилглицеролов. Однако оптимальной средой ее действия является среда, близкая к нейтральной. Поэтому липаза в желудке у взрослых людей практически неактивна из-за малых значений pH.

Переваривание липидов в кишечнике

В двенадцатиперстной кишке пища подвергается действию желчи и сока поджелудочной железы. На первом этапе там происходит эмульгирование жиров

Эмульгирование жиров

Жиры составляют до 90 % липидов, поступающих с пищей. Переваривание жиров происходит в тонком кишечнике, однако уже в желудке небольшая часть жиров гидролизуется под действием «липазы языка». Этот фермент синтезируется железами на дорсальной поверхности языка и относительно устойчив при кислых значениях рН желудочного сока. Поэтому он действует в течение 1-2 ч на жиры пищи в желудке. Однако вклад этой липазы в переваривание жиров у взрослых людей незначителен. Основной процесс переваривания происходит в тонкой кишке.

Так как жиры — нерастворимые в воде соединения, то они могут подвергаться действию ферментов, растворённых в воде только на границе раздела фаз вода/жир. Поэтому действию панкреатической липазы, гидролизующей жиры, предшествует эмульгирование жиров. Эмульгирование (смешивание жира с водой) происходит в тонком кишечнике под действием солей жёлчных кислот. Жёлчные кислоты представляют собой в основном конъюгированные жёлчные кислоты: таурохолевую, гликохолевую и другие кислоты.

Гормоны, активирующие переваривание жиров

При поступлении пищи в желудок, а затем в кишечник клетки слизистой оболочки тонкого кишечника начинают секретировать в кровь пептидный гормон холецистокинин (панкреозимин). Этот гормон действует на жёлчный пузырь, стимулируя его сокращение, и на экзокринные клетки поджелудочной железы, стимулируя секрецию пищеварительных ферментов, в том числе панкреатической липазы. Другие клетки слизистой оболочки тонкого кишечника в ответ на поступление из желудка кислого содержимого выделяют гормон секретин. Секретин – гормон пептидной природы, стимулирующий секрецию гидрокарбоната (НСО3-) в сок поджелудочной железы.

Нарушения переваривания и всасывания жиров

Нарушение переваривания жиров может быть следствием нескольких причин. Одна из них – нарушение секреции жёлчи из жёлчного пузыря при механическом препятствии оттоку жёлчи. Это состояние может быть результатом сужения просвета жёлчного протока камнями, образующимися в жёлчном пузыре, или сдавлением жёлчного протока опухолью, развивающейся в окружающих тканях. Уменьшение секреции жёлчи приводит к нарушению эмульгирования пищевых жиров и, следовательно, к снижению способности панкреатической липазы гидролизовать жиры.

Нарушение секреции сока поджелудочной железы и, следовательно, недостаточная секреция панкреатической липазы также приводят к снижению скорости гидролиза жиров. В обоих случаях нарушение переваривания и всасывания жиров приводит к увеличению количества жиров в фекалиях – возникает стеаторея (жирный стул). В норме содержание жиров в фекалиях составляет не более 5%. При стеаторее нарушается всасывание жирорастворимых витаминов (A, D, E, К) и незаменимых жирных кислот, поэтому при длительно текущей стеаторее развивается недостаточность этих незаменимых факторов питания с соответствующими клиническими симптомами. При нарушении переваривания жиров плохо перевариваются и вещества нелипидной природы, так как жир обволакивает частицы пищи и препятствует действию на них ферментов.

Всасывание липидов в кишечнике

Ресинтез жиров в слизистой оболочке тонкого кишечника

Основная часть всосавшихся в тонком кишечнике липидов принимает участие в ресинтезе триацилглицеринов. Для этого в эндоплазматическом ретикулуме энтероцитов работают специальные ферменты

Факторы, влияющие на всасывание липидов

Катаболизм липидов

Катаболизм липидов – совокупность всех катаболических процессов липидов, включающая несколько стадий:

  • Липолиз
  • Окисление жирных кислот
  • Окисление кетоновых тел
  • Перекисное окисление липидов

Липолиз

Липолиз – катаболический процесс, результатом которого является расщепление жиров, происходящее под действием фермента липазы.

Обмен холестерола

Холестерол — основной стероид организма животных. У взрослого человека содержание холестерола составляет 140—150 г. Около 93 % стероида входит в состав мембран и 7 % находится в жидкостях организма. Холестерол увеличивает микровязкость мембран и снижает их проницаемость для Н2О и водорастворимых веществ. В крови он представлен в виде свободного холестерола, входящего в оболочку липопротеинов, и его эфиров, которые вместе с ТАГ составляют внутреннее содержимое этих частиц. Содержание холестерола и его эфиров в составе хиломикронов составляет ~ 5 %, в ЛПОНП ~10 %, в ЛПНП ~ 50—60 % и в ЛПВП ~ 20—30 %. Концентрация холестерола в сыворотке крови взрослого человека в норме равна ~ 200 мг/дл или 5,2 ммоль/л, что соответствует холестериновому равновесию, когда количество холестерола, поступающего в организм, равно количеству холестерола выводимому из организма. Если концентрация холестерола в крови выше нормы, то это указывает на задержку его в организме и является фактором риска развития атеросклероза.

Холестерол является предшественником всех стероидов животного организма:

  • жёлчных кислот, содержание которых у взрослого человека составляет около 5 г;
  • стероидных гормонов: кортикостероидов, образующихся в корковом слое надпочечников, андрогенов — в семенниках и эстрогенов — в яичниках, синтез общего количества которых не превышает 40 мг/с (с — сутки);
  • витамина D3, синтезирующегося в коже под действием УФ-излучения в количестве 10 мг/с.

Холестериновое равновесие поддерживается благодаря тому, что с одной стороны холестерол поступает с пищей (~ 0,3—0,5 г/с) и синтезируется в печени или других тканях (~ 0,5 г/с), а с другой — выводится с калом в виде жёлчных кислот, холестерола желчи, продуктов катаболизма стероидных гормонов, с кожным салом, в составе мембран слущенного эпителия (~ 1,0 г/с)

Структурная. Свободный холестерин является, обязательным структурным компонентом мембран клеток.

2.Метаболическая. Холестерин является предшественником биологически активных веществ: витамина D3

СТЕРОИДНЫХ гормонов (АНДРОГЕНОВ, ЭСТРОГЕНОВ, КОРТИКОИДОВ) При окислении холестерина в печени при участии ЦИТОХРОМА Р-450 образуются желчные кислоты, которые принимают участие в переваривании жиров пищи. Наиболее богаты холестерином плазматические мембраны ГЕПАТОЦИТОВ, где на его долю приходится 30% всех мембранных липидов. Содержание холестерина в миелине составляет 20%. В свободном виде холестерин транспортируется по организму с помощью транспортных ЛИПОПРОТЕИНОВ крови.

Источники холестерина:

1. Пища. За сутки в организм взрослого человека поступает 0,3гр. холестерина.

2. У человека в среднем с массой 65-70кг за сутки синтезируется 3.5 -4,2гр. холестерина. Печень занимает главное место в синтезе холестерина (85%), в меньшей степени холестерин синтезируется в кишечнике (10%) и коже (5%). На экспорт холестерин синтезируется только в печени и кишечнике.

Процесс биосинтеза сложен и многоступенчат. Он включает в себя 35 реакций. Схематично его можно представить следующим образом:

Образовавшийся в результате распада мембранных ЛИПИДОВ, а также излишки холестерина с помощью ЛПВП доставляется для окисления в печень, и в составе желчных кислот удаляется из организма с каловыми массами в виде КОПРОСТЕРИНОВ.

ПАТОЛОГИЯ ЛИПИДНОГО ОБМЕНА.

1 .На этапе поступления жиров с пищей:

A. Обильная жирная пища на фоне ГИПОДИНАМИИ приводит к развитию АЛИМЕНТАРНОГО ОЖИРЕНИЯ.

B. Недостаточное поступление жиров или их отсутствие приводит к ГИПО- и АВИТАМИНОЗАМ A, D. Е, К. Могут развиваться ДЕРМАТИТЫ, СКЛЕРОЗ сосудов, когда с пищей не поступают ЭССЕНЦИАЛЬНЫЕ ВЖК. Также нарушается процесс синтеза ПРОСТАГЛАНДИНОВ, ПРОСТАЦИКЛИНОВ, ТРОМБОКСАНОВ и ЛЕЙКОТРИЕНОВ местных гормонов.

C. Недостаточное поступление с пищей ЛИПОТРОПНЫХ веществ приводит к развитию жировой инфильтрации тканей. К ЛИПОТРОПНЫМ веществам относятся:

ХОЛИН, ИНОЗИТ, СЕРИИ вещества, принимающие участие в синтезе

ФОСФОЛИПИДОВ. Витамин В6 (ПЕРИДОКСАЛЬФОСФАТ), входящий в состав ДК СЕРИНА. МЕТИОНИН поставщик МЕТИЛЬНЫХ групп при биосинтезе ХОЛИНА из ЭТАНОЛАМИНА.

Витамин BI2 и ФОЛИЕВАЯ К-ТА, которые являются КОФЕРМЕНТАМИ МЕТИЛТРАНСФЕРАЗ.

Циклы Кори и аланина

В клетках, не содержащих митохондрий (например, в эритроцитах), или в тканях при недостаточном снабжении кислородом (например, в активно работающих мышцах) АТФ (АТР) синтезируется за счет процесса превращений глюкозы в лактат (анаэробногогликолиза).

Лактат переносится кровью в печень, где в процессе глюконеогенеза с затратой АТФ вновь конвертируется в глюкозу (цикл Кори).

При интенсивной работе мышц максимально активируется гликолиз. Продукт гликолиза, пировиноградная кислота (пируват) накапливается в цитоплазме и недостаточно быстро поступает в митохондрии, если они из-за недостатка кислорода не готовы к окислению пирувата. В анаэробных условиях пируват в реакции, катализируемой лактатдегидрогеназой (заключительный этап гликолиза) восстанавливается до лактата. Одновременно НАДН (NADH), кофермент лактатдегидрогеназы, окисляется до НАД+ (NAD+), который вновь используется на окислительном этапе гликолитического пути. Этой реакции способствует относительно высокое отношение НАДН/НАД+ в мышечной ткани. Лактат диффундирует в кровь и поступает в печень, где конвертируется в глюкозу. Таким образом, образование лактата временно заменяет аэробный метаболизм глюкозы и частично переносит этот процесс из мышц в печень.

Обратная связь, подобная циклу Кори, существует в глюкозо-аланиновом цикле, в котором также участвует пируват. Глюкозо-аланиновый цикл берет начало с протеолиза белков. Образующиеся аминокислоты в результате трансаминирования в присутствии ферментов превращаются в α-кетокислоты, которые в основном включаются в цикл трикарбоновых кислот (цитратный цикл). Одновременно в реакции, катализируемой аланинтрансаминазой, аминогруппы из разных аминокислот переносятся на имеющийся субстрат, пируват. Образующийся аланин поступает в кровь и переносится в печень. Таким образом, цикл аланина служит каналом передачи азота и предшественников глюкозы в печень, которая является местом синтеза конечных продуктов азотистого обмена, например мочевины.

Защита

Процессы окисления не должны быть излишне интенсивными, их активация может привести к пагубным последствиям. Избыточному выделению свободных радикалов препятствует особая защитная система – именно она поддерживает баланс в организме, препятствуя разрушению здоровых клеток. От какого соединения следует ждать защиты?

Важную роль играют ферменты, которые превращают активные формы кислорода в безобидные соединения. Среди таких ферментов можно выделить каталазу, супероксиддисмутазу и глутатионпероксидазу. Наибольшая активность этих ферментов наблюдается в печени и почках.

Витамины

Витамин E относится к природным антиоксидантам. Это липофильная молекула, основная функция которой – подавлять свободные радикалы. Этот процесс проходит в гидрофобном слое клеточной мембраны. Альфа-токоферол более активен, чем бета. Механизм его действия заключается в отдаче атома водорода свободному радикалу, что останавливает пероксидное окисление липидов. Антиоксиданты вызывают снижение функции активных форм.

Витамин C также относится к группе антиоксидантов, поддерживая защиту клеток двумя механизмами. Это соединение способно восстанавливать витамин E, что усиливает свойства последнего. Кроме того, он способен самостоятельно инактивировать водорастворимые формы кислорода, за счет того, что является сильнейшим восстановителем.

Бета-каротин также способен блокировать перекисное окисление липидов. Такое соединение является предшественником витамина A. Активация перекисного окисления становится невозможной, благодаря действию этого соединения.

Таким образом, можно сделать вывод, что поступление необходимого количества витаминов в организм является профилактикой некоторых патологических изменений. Витамины должны преимущественно поступать с пищей – следует придерживаться рационального питания, употреблять в нужном количестве фрукты и овощи. Раз в 6 месяцев рекомендуется принимать курс поливитаминов. В пище должно быть сбалансированное содержание белков, углеводов и жиров.

Эйкозаноиды

Основная статья: Эйкозаноиды

Эйкозаноиды, включающие в себя простагландины, тромбоксаны, лейкотриены и ряд других веществ, — высокоактивные регуляторы клеточных функций. Они имеют очень короткий Т1/2, поэтому оказывают эффекты как «гормоны местного действия», влияя на метаболизм продуцирующей их клетки по аутокринному механизму, и на окружающие клетки — по паракринному механизму. Эйкозаноиды участвуют во многих процессах: регулируют тонус гладкомышечных клеток и вследствие этого влияют на АД, состояние бронхов, кишечника, матки. Эйкозаноиды регулируют секрецию воды и натрия почками, влияют на образование тромбов. Разные типы эйкозаноидов участвуют в развитии воспалительного процесса, происходящего после повреждения тканей или инфекции. Такие признаки воспаления, как боль, отёк, лихорадка, в значительной мере обусловлены действием эйкозаноидов. Избыточная секреция эйкозаноидов приводит к ряду заболеваний, например, бронхиальной астме и аллергическим реакциям.

Субстраты для синтеза эйкозаноидов

Основным субстратом для синтеза эйкозаноидов является арахидоновая (ω-6-эйкозатетраеновая) кислота, содержащая 4 двойные связи при углеродных атомах (5, 8, 11, 14). Она может поступать с пищей или синтезироваться из линолевой кислоты. В небольших количествах для синтеза эйкозаноидов могут использоваться ω-6-эйкозатриеновая кислота с тремя двойными связями (5, 8, 11) и ω-3-эйкозапентаеновая кислота, в составе которой имеется 5 двойных связей в положениях 5, 8, 11, 14, 17. Обе минорные эйкозановые кислоты либо поступают с пищей, либо синтезируются из олеиновой и линоленовой кислот соответственно.

Пути биосинтеза эйкозаноидов из арахидоновой кислоты

Синтез лейкотриенов, ГЭТЕ(гидроксиэйкозатетроеноатов), липоксинов

Дополнительные сведения: Лейкотриены

Синтез лейкотриенов идёт по пути, отличному от пути синтеза простагландинов, и начинается с образования гидроксипероксидов — гидропероксидэйкозатетраеноатов (ГПЭТЕ). Эти вещества или восстанавливаются с образованием гидроксиэйкозатетроеноатов (ГЭТЕ) или превращаются в лейкотриены или липоксины. ГЭТЕ отличаются по положению гидроксильной группы у 5-го, 12-го или 15-го атома углерода, например: 5-ГЭТЕ, 12-ГЭТЕ.

Липоксины (например, основной липоксин А4) включают 4 сопряжённых двойных связи и 3 гидроксильных группы.

Синтез липоксинов начинается с действия на арахидоновую кислоту 15-липоксигеназы, затем происходит ряд реакций, приводящих к образованию липоксина А4

Клинические аспекты обмена эйкозаноидов

Медленно реагирующая субстанция при анафилаксии (МРВ-А) представляет собой смесь лейкотриенов С4, D4 и Е4. Эта смесь в 100—1000 раз более эффективна, чем гистамин или простагландины как фактор, вызывающий сокращение гладкой мускулатуры бронхов. Эти лейкотриены вместе с лейкотрином В4 повышают проницаемость кровеносных сосудов и вызывают приток и активацию лейкоцитов, а также, являются важными регуляторами при многих заболеваниях, в развитии которых участвуют воспалительные процессы или быстрые аллергические реакции (например, при бронхиальной астме).

Использование производных эйкозаноидов в качестве лекарственных средств

Хотя действие всех типов эйкозаноидов до конца не изучено, имеются примеры успешного использования лекарств — аналогов эйкозаноидов для лечения различных заболеваний. Например, аналоги PG Е1 и PG Е2 подавляют секрецию соляной кислоты в желудке, блокируя гистаминовые рецепторы II типа в клетках слизистой оболочки желудка. Эти лекарства, известные как Н2-блокаторы, ускоряют заживление язв желудка и двенадцатиперстной кишки. Способность PG Е2 и PG F2α стимулировать сокращение мускулатуры матки используют для стимуляции родовой деятельности.

Что такое липиды

Эти соединения являются органическими и объединяют целую группу веществ со сходным строением: все они содержат жирные кислоты в разных модификациях. Выделяют жиры и подобные им вещества, которые могут не иметь кислоты, а вместо нее содержать другой химический компонент со сходными свойствами. Липиды являются более обширной группой веществ, по сравнению с жирами, которые относятся лишь к некоторым их разновидностям, синонимом служат триглицериды.

Липиды объединяет способность вступать во взаимодействие с другими органическими веществами, примеры — бензин, эфир, хлороформ, бензол . В воде и спирте они не растворяются.

Липиды содержатся в большинстве продуктов питания, используются в медицине и фармацевтике, играют важную роль во многих отраслях промышленности. В живых организмах они в том или ином виде входят в состав всех клеток, считаются важным источником энергии.

История открытия

Практическое применение липидов было известно с давних времен. Еще в Древнем Египте имеются упоминания об использовании подобных соединений для получения лекарств, красок, косметики. Широкое распространение получили растительные масла и животные жиры, которые активно использовали индейцы, северные народы как для приготовления пищи, так и для заживления ран. Фактически эти вещества не имели какого-то научного названия, однако нашли свое место в алхимии как вспомогательный компонент для приготовления эликсиров.

В обиход простых людей, не имеющих отношения к медицине, липиды вошли в 18 веке, когда их стали применять для изготовления мыла. В 19-м столетии ученые начали активно исследовать строение этих веществ, поскольку активно наращивался рост их промышленного использования. Лавры первенства в этом процессе принадлежат ученым Карлу Вильгельму Шееле и Мишелю Шеврелю, которые определили состав и провели анализ свойств.

В 1854 году удалось синтезировать липиды, а также изучить опытным путем их основные химические характеристики. Исследователей также интересовало, какие функции выполняют эти веществ в организме человека. В 1877 году были выделены важнейшие компоненты биологических мембран — фосфолипиды.

Следующее столетие ознаменовано развитием химического производства, в котором жироподобные вещества стали использовать для изготовления моющих средств, детергентов, эмульгаторов. Совершенствовались и методы исследования этих соединений

В 70–80-е годы липиды попадают под пристальное внимание врачей в связи с тем, что оказывают влияние на развитие заболевания, получившего название атеросклероз

Место в клетке

Строительными материалами для синтеза липидов служат жирные кислотные фракции и спирт глицерол. Большей частью они поступают в организм с пищей, откуда транспортируются со специальными белками в печень. В клетках этого органа продукты распределяются во все ткани организма для образования липидов. Затем они снова соединяются со специальными транспортными белками и доставляются «по адресу».

Соединения поступают в клетку в основном при помощи активного транспорта, то есть с затратой энергии. Для этих целей имеются особые органеллы. В комплексе Гольджи, который имеет вид складчатой «гармошки», происходит синтез простых липидов, далее в эндоплазматической сети (ЭПС) происходит их модификация в зависимости от потребностей, то есть конечный синтез. Всем клеточным соединениям требуются фосфолипиды для построения мембран. Далее из сети сложные вещества поступают в места использования.

Клетка также может и сама образовывать липидные соединения, но не все, и здесь ключевую роль играют жирные кислоты, которые делятся на заменимые и незаменимые. К последним относятся линолевая и линоленовая, они непременно должны поступать в организм человека с пищей.

Синтез заменимых осуществляется через промежуточный продукт других видов обмена в клетке — ацетил-Коэнзим-А. Он поступает в цитоплазму, а оттуда в сеть ЭПС и в митохондрии, где протекает цепь ферментативных реакций. В результате образуются жирные кислоты.

Обмен холестерола

Холестерол — основной стероид организма животных. У взрослого человека содержание холестерола составляет 140–150 г. Около 93% стероида входит в состав мембран и 7% находится в жидкостях организма. Холестерол увеличивает микровязкость мембран и снижает их проницаемость для Н2О и водорастворимых веществ. В крови он представлен в виде свободного холестерола, входящего в оболочку липопротеинов, и его эфиров, которые вместе с ТАГ составляют внутреннее содержимое этих частиц. Содержание холестерола и его эфиров в составе хиломикронов составляет ~ 5 %, в ЛПОНП ~10%, в ЛПНП ~ 50—60% и в ЛПВП ~ 20–30 %. Концентрация холестерола в сыворотке крови взрослого человека в норме равна ~ 200 мг/дл или 5,2 ммоль/л, что соответствует холестериновому равновесию, когда количество холестерола, поступающего в организм, равно количеству холестерола выводимому из организма. Если концентрация холестерола в крови выше нормы, то это указывает на задержку его в организме и является фактором риска развития атеросклероза.

Холестерол является предшественником всех стероидов животного организма:

  • жёлчных кислот, содержание которых у взрослого человека составляет около 5 г;
  • стероидных гормонов: кортикостероидов, образующихся в корковом слое надпочечников, андрогенов — в семенниках и эстрогенов — в яичниках, синтез общего количества которых не превышает 40 мг/с (с — сутки);
  • витамина D3, синтезирующегося в коже под действием УФ-излучению в количестве 10 мг/с.

Холестериновое равновесие поддерживается благодаря тому, что с одной стороны холестерол поступает с пищей (~ 0,3—0,5 г/с) и синтезируется в печени или других тканях (~ 0,5 г/с), а с другой — выводится с калом в виде жёлчных кислот, холестерола желчи, продуктов катаболизма стероидных гормонов, с кожным салом, в составе мембран слущенного эпителия (~ 1,0 г/с)

Обмен фосфолипидов

Фосфолипиды выполняют ряд важных биологических функций. Как большинство полярных липидов, они являются амфифильными соединениями, несущими гидрофобные и гидрофильные группы. Некоторые фосфолипиды, например фосфатидилхолин, представляют собой диполярные ионы, обладающие катионной и анионной группами, и являются основными компонентами клеточных мембранных систем. Например, в миелиновом волокне нерва фосфолипиды и цереброзиды составляют приблизительно 60 % сухого веса.

Распределение и обмен

Среди липидов тела фосфолипиды распределены неравномерно. Богатыми источниками фосфолипидов являются липиды тканей различных желез, в особенности печени, а также плазма крови, где они могут составлять до половины всех липидов. Фосфолипиды являются также преобладающими липидами в желтках птичьих яиц и в семенах бобовых растений. Обмен различных фосфолипидов в определённых местах животного организма изучали с использованием различных изотопов, наиболее часто 32Р. Период полупревращения этих липидов колеблется от менее одного дня для фосфатидилхолина печени до более 200 сут для фосфатидилэтаноламина мозга.

Метаболизм сфинголипидов

Сфинголипиды – производные церамида, образующегося в результате соединения аминоспирта сфингозина и жирной кислоты. В группу сфинголипидов входят сфингомиелины и гликосфинголипиды.

Сфингомиелины находятся в мембранах клеток различных тканей, но наибольшее их количество содержится в нервной ткани. Сфингомиелины миелиновых оболочек содержат в основном жирные кислоты с длинной цепью: лигноцериновую и нервоновую кислоты, а сфингомиелин серого вещества мозга содержит преимущественно стеариновую кислоту.

Катаболизм сфингомиелина и его нарушения

В лизосомах находятся ферменты, способные гидролизовать любые компоненты клеток. Эти ферменты называют кислыми гидролазами, так как они активны в кислой среде.

Анаболизм липидов

Липогенез

Основная статья: Липогенез

Липогенез — процесс синтеза жирных кислот, основным источником которого является углеводы.

С пищей в организм поступают разнообразные жирные кислоты, в том числе и незаменимые. Значительная часть заменимых жирных кислот синтезируется в печени, в меньшей степени — в жировой ткани и лактирующей молочной железе. Источником углерода для синтеза жирных кислот служит ацетил-КоА, образующийся при распаде глюкозы в абсорбтивном периоде. Таким образом, избыток углеводов, поступающих в организм, трансформируется в жирные кислоты, а затем в жиры.

Синтез кетоновых тел

Все кетоновые тела берут начало от ацетоацетил-КоА, который образуется при конденсации 2-х молекул ацетил-КоА по принципу «голова в хвост». Реакция конденсации происходит в митохондриях

В печени ацетоацетил-КоА взаимодействует ещё с одной молекулой ацетил-КоА и превращается в ГОМГ-КоА- важное промежуточное вещество для синтеза холестерола и стероидов.

18.1. Витамин е

В своём составе витамин Е (токоферол, антистерильный витамин) содержит циклический спирт токол и ненасыщенный боковой радикал, Витамин Е относится к жирорастворимым витаминам. Он широко распространён в природе. Суточная потребность в витамине Е для взрослого человека составляет 20-50 мг. Витамин Е является мощным антиоксидантом, «ловушкой» для свободных радикалов, участвует в обмене селена. Авитаминоз Е встречается редко и проявляется в повсеместном повреждении клеточных мембран. В эритроцитах авитаминоз проявляется гемолизом, в мышцах – мышечной слабостью, дистрофией, в репродуктивных органах – нарушением подвижности сперматозоидов, рассасыванием плода, невынашиванием беременности.

Добавить комментарий